Valuation of Long-Duration Storage in Resource Planning

Alex Moreira, Lawrence Berkeley National lab

10/16/24

Grid Integration Group – LBNL

Power system operations, planning and economics

Motivation & Research Questions

- Current methodologies calculate the future value of long-duration energy storage (LDES) to the Grid based on scenarios of LDES technology costs projected many decades ahead (2040, 2050, 2070).
- Current research questions on LDES valuation:
	- *Given LDES costs projected, what is the value that LDES can bring to a future system?*
- However, for technologies that **are not matured** yet, long-term cost cannot be projected. Instead, they are driven by policy decisions (e.g., DOE "earthshot" storage), which can shape the R&D, supply chains, etc.
- So, we ask a different question:
	- *Given a decarbonization target, what is the LDES technology cost that will turn it into a viable solution?*
- Support cost policy (government "earthshots", industry R&D targets) of unmatured technologies.

LDES Liftoff

Improvements Needed

LDES technology cost reduction of 45-55% and Round Trip Efficiency (RTE) improvement of 7-15% by 2030 to attract sustained investment.

Multi-day / week LDES To be competitive with alternative options, LDES technology costs should come down by 45-55% by 2028-2030 relative to costs reported by leading technologies today, and both the performance (measured by roundtrip efficiency - RTE) and the 36-160 hours working lifetime of LDES technologies would also improve.

Inter-day LDES

10-36 hours

https://liftoff.energy.gov/long-duration-energy-storage/

LDES Types

Objective & Approach

- Develop an **innovative valuation framework** that captures the value of LDES in long-term decarbonization.
- The objective is to capture the cost (\$/MWh) below which LDES becomes **economically viable as a firm capacity technology** to compensate renewables variability.
- We use as an example of decarbonization target, the **replacement of Gas** power plants in 2040, 2045, 2050.

Reserve requirements

Optimal Capacity Expansion with LDES cost conditions

Cost below which LDES is economically viable as firm capacity.

Methodology

Learnings: Costs

A California case study

CA context

Gas currently provides firm generation and flexibility

• LDES can be an

Case Study

Existing Generators

Renewable Tech: Biopower; Geothermal; Hydropower; Distributed/ Utility PV; On/offshore Wind

• **Short-duration Tech**: 2-8 hours; PHS

• **Fossil**: Oil/Gas

Balancing areas used in Cambium, ReEDS

- Hourly (8760) resolution
- 15% Reserve Criterion
- **The Model 1 considers:**
	- All existing generators do not change.
	- No investment.
- **The Model 2 considered:**
	- The retirement of 100% gas power.
	- Candidate LDES.
		- Power quantity = Max of 75 GW
		- Number of periods = 100h
		- RTE = 42.5% (Round trip efficiency of an **Ion-air battery** proposed by Form Energy).
	- Candidate SDES.
		- Power quantity = Max of 45 GW
		- Number of periods $=$ 4h
		- RTF = $85%$

Learnings 2050 California

If gas generators are replaced by SDES and renewables only, overall costs will be higher.

17 GW of 100-h LDES power capacity can support the system to maintain the same baseline costs

Associated boundary cost would be US\$ 512.54kW-1

Learnings 2050 California Investment cost reduction

achieved via cheaper renewable mix as more LDES is present

Learnings 2050 California

Opportunity value for LDES comes from avoided investments

- We cannot replace gas if we do not have at least 9 GW of 100h LDES
- LDES has to cost between 100-515 \$/kW to be viable in California system
- The quantity of LDES more favorable to technology costs is around 17 GW

Sensitivity - 15.0 GW **Duration** - 610.60 \$/kW 600 160-hour LDES 15.0 GW The boundary cost 100-hour LDES 505.93 \$/kW $\frac{\text{S}}{\text{S}}$ 500
 $\frac{\text{S}}{\text{S}}$ 400 increases with the 40-hour LDES duration of the LDES. The minimum capacity decreases 300 Boundary with the LDES duration. 200 The boundary cost - 15.0 GW 100 peaks at ~15 GW for - 365.50 \$/kW all durations. 0 For higher quantities 10 20 $30²$ 40 50 60 70° storage duration **Power capacity (GW)** does not affect value. 15 GW

Sensitivity Gas Prices

The analysis looks at natural gas prices being 5%, 10%, and 15% higher or lower in 2050 compared to the Reference case.

The boundary cost peaks at ~15 GW for all durations.

Sensitivity Gas Prices and Solar Investment Costs

Learnings: Operations

A California case study

Generation and Reserves

Opportunity value model – Generation

Baseline model – Reserves

Opportunity value model – Reserves

LDES vs Gas Operation

LDES vs Renewables Operation

It is easy to observe how LEDS charges with the increased availability of renewable sources and vice versa.

Availability of Renewable Generators - monthly average -- 2050

LDES vs SDES Operation

ENERGY TECHNOLOGIES AREA

Energy Prices

- Energy prices become more frequently lower once gas generators are replaced by storage + renewables
- However, volatility is higher

SDES Arbitrage

SDES arbitrage profit patterns change once gas generators are replaced by renewables +storage

Essentially, higher arbitrages profits are achieved during near scarcity situations

Baseline model

LDES Arbitrage

LDES is also more compensated during the end of summer

P. Silva, A. Moreira, M. Heleno and A. L. M. Marcato, "Boundary Technology Costs for Economic Viability of Long-Duration Energy Storage Systems in California," in *IEEE Transactions on Energy Markets, Policy and Regulation, https://ieeexplore.ieee.org/abstract/document/10638215.*

Contact Alex Moreira – AMoreira@lbl.gov

