TELECOM RELIABILITY ISSUES, AS APPLIED TO 9-1-1

Brian Rosen Principal Brian Rosen Technologies, LLC

Who am I and why should you care?

- I'm the tech weenie here
- Systems architect on high availability systems
- Principal Architect of Next Generation 9-1-1
 - Co-chair of NENA i3 architecture working group
- 30+ year background in telecom and IP networking
- Consultant to State government on
 - NG9-1-1 RFPs, vendor selection, contract monitoring
 - 9-1-1 Outage investigations

Disclaimer

Personal opinions, not necessarily backed up by a whole lot of facts

- But its my job to understand how reliable systems are built, and what goes wrong with them
- Been around a long time, like when there was "Ma Bell". Worked for Tier 1 suppliers to telcos.
- I've been spending a fair amount of time lately looking deeply into failures of the 911 system
 - It's not pretty

The landscape today in telecom

- Plain Old Telephone systems ("wireline") has close to zero investment, but still a viable business, and the carrier of last resort for many rural citizens
- Wireless is the flash, big money maker, large investment, if you are ATT, TM or VZW
- IP networking and its various delivery platforms, including fiber to the curb are healthy businesses
- Underlying all of these are the optical networks that actually carry all the traffic

A primer on reliability

- What we actually care most about is "availability" = percentage of time a system is available to serve its customers. Usually this is expressed in "nines" allability Downtime per year
 - 90% "one nine" 36.5 days/yr downtime
 - 99% "two nines" 3.65 days/yr downtime
 - 99.9% "three nines" 8.76 hours/yr downtime
 - 99.99% "four nines" 52.56 minutes/yr downtime
 - 99.999% "five nines" 5.26 minutes/yr downtime
- Availability can be measured (on a very mature, stable system) or predicted based on statistics for the components of the system and the arrangement of those components
- Predictions are based on "Mean Time Between Failures" and "Mean Time To Repair"

What we see happening (specifically in 9-1-1)

- Systems using somewhat older tech are failing more often, and taking longer to repair
 - One reason for this is that telcos have lost their ability to track how the networks are actually deployed
- Newer systems are failing mostly by either fiber cuts or software bugs
 - Fiber cuts are more common now, probably because the construction industry is better at digging holes
 - Software bugs are really hard on availability: to raise availability, you install redundant elements, so if one fails, another is available to take the load. But software bugs affect all the replicas, so that entire mechanism doesn't work.

Some issues are just poor execution

- We have seen a significant number of failures of the 911 system that were entirely avoidable "dumb" people mistakes
 - My current worst case was a single fiber cut brought down a significant part of the Nebraska 911 system because an earlier cut resulted in a temporary work around which persisted for **11 years**!
- We see examples of insufficient redundancy that is completely obvious but either someone thought it was too expensive to do it right, or no one verified that the redundant path/circuit/equipment was actually ready to serve if needed, and of course it wasn't
- We also see somewhat deliberate poor design where the carrier is arguing the regulations that otherwise would require a better design don't apply

We have some regulatory issues

Next Generation 9-1-1 is substantially different from E9-1-1

- All new protocols
- All new databases
- All new functions
- Regulations at both state and FCC level were written for E911 and need to be updated
- Carriers are using their own interpretation of the regs, and it's not great
- Latest FCC R&O on NG9-1-1 is a great start, but more needed

There are some bright spots (again, in 9-1-1)

- Internet Protocol networks really are inherently more reliable than older technology.
- One reason is that an IP network will find a path, if it exists, between two points even if there is major damage to the network
- Older technology relies on pre-determined alternate routes
- The latest standards incorporate more/easier ways to make redundancy easier to deploy and manage
- We're being somewhat successful at getting vendors to show their system designs can meet a 5 nines predicted availability

One of my latest attempts to improve

- The next version of the base technical standard for NG9-1-1 describes a mechanism for one state to back up another state's NG9-1-1 system
- If the entire state system goes down, the backup system takes over
- This is specifically aimed at dealing with software bugs. The two systems don't have to, and should not, use the same software
- But the mechanism is (currently) optional, so we have to convince RFP writers to require it, and insist vendors implement and deploy it

When Failures Occur, Call in the Experts

- Shameless plug for consultants like me ⊗
- Don't rely on what the utility tells you what happened
- Its usually truthful, but not the whole truth
- You need to ask the right questions and analyze the response to understand what really happened, and what needs to be done to avoid recurrence
- I'm big on the true root cause
 - Usually, what you get is a symptom of a bigger problem
 - We want to avoid the whole class of problems, not just this specific one
 - The Five Whys